Overview Of Nandrolone Decanoate / Testosterone Cypionate / Testosterone Enanthate Injection
Dosage Power Of Nandrolone Decanoate / Testosterone Cypionate / Testosterone Enanthate Injection
Generic Details
Nandrolone decanoate, also known as 19-nortestosterone, is an injectable medication that belongs to the group of drugs called class II anabolic androgenic steroids (AAS). The drugs that fall under class II AAS are all known as 19-nortestosterone derivatives; they are all synthetic derivatives of the endogenous male hormone testosterone. The primary role of testosterone in the human male is to aid the development of secondary sexual characteristics (androgenic effects) during puberty and the development as well as maintenance of muscle mass (anabolic effects); drugs, such as Nandrolone decanoate, that fall under the AAS category were synthesized to have more anabolic and less androgenic properties.
Originally synthesized and described by Birch in 1950, nandrolone is similar in chemical composition and structure to testosterone. The only difference in chemical composition between testosterone and nandrolone is that nandrolone lacks a methyl group at carbon C-19. Due to its demethylation at C-19, nandrolone decanoate has very strong anabolic effects but weak androgenic effects; its anabolic effects are much stronger than testosterone.
One of the main indications for the clinical use of injectable nandrolone decanoate is in the management of refractory anemia that is not responsive to other treatment modalities; nandrolone triggers the production of erythropoietin by the kidneys, which results in an increased red blood cell mass and volume. Additionally, in patients suffering from chronic wasting diseases such as cancer, nandrolone may promote tissue development with the subsequent building of muscle mass. Nandrolone may also be used in the medical management of postmenopausal women who have osteoporosis.
Testosterone Cypionate / Testosterone Enanthate
Testosterone was the first ever synthesized anabolic steroid, and testosterone cypionate is a slow-acting, long-ester, oil-based injectable testosterone compound that is commonly prescribed for the treatment of hypogonadism – low testosterone levels and various related symptoms in males.
Testosterone cypionate first appeared on the U.S. prescription drug market during the early 1950’s, as Depo-Testosterone by Upjohn, now Pharmacia & Upjohn. Due to testosterone cypionate’s vast similarity to the earlier released and slightly longer testosterone enanthate, it has received only limited global availability and is often identified as an American medication.
Testosterone is the primary androgen found in the body. Endogenous testosterone is synthesized by cells in the testis, ovary, and adrenal cortex. Therapeutically, testosterone is used in the management of hypogonadism, either congenital or acquired. Testosterone is also the most effective exogenous androgen for the palliative treatment of carcinoma of the breast in postmenopausal women. Testosterone was in use in 1938 and approved by the FDA in 1939. Anabolic steroids, derivatives of testosterone, have been used illicitly and are now controlled substances. Testosterone, like many anabolic steroids, was classified as a controlled substance in 1991. Testosterone is administered parenterally in regular and delayed-release (depot) dosage forms. In September 1995, the FDA initially approved testosterone transdermal patches (Androderm); many transdermal forms and brands are now available including implants, gels, and topical solutions. A testosterone buccal system, Striant, was FDA approved in July 2003; the system is a mucoadhesive product that adheres to the buccal mucosa and provides a controlled and sustained release of testosterone. In May 2014, the FDA approved an intranasal gel formulation (Natesto). A transdermal patch (Intrinsa) for hormone replacement in women is under investigation; the daily dosages used in women are much lower than for products used in males. The FDA ruled in late 2004 that it would delay the approval of Intrinsa women’s testosterone patch and has required more data regarding safety, especially in relation to cardiovascular and breast health.
The Cypionate Ester: An ester is any of a class of organic compounds that react with water to produce alcohols and organic or inorganic acids. Most esters are derived from carboxylic acids, and injectable testosterone is typically administered along with one or multiple esters. The addition of a carbon chain (ester) attached to the testosterone molecule controls how soluble it will be once inside the bloodstream. The smaller the carbon chain, the shorter the ester, and the more soluble the medication. A small/short will have a shorter half life – a repeating cycle of a medication’s time within the body. The inverse is true of long carbon chains, like cypionate, which both act slowly upon the body and evacuates the body at a similar rate.
MOA
Nandrolone is an androgen receptor agonist, and its actions are mediated through the same receptors that regulate the action and activity of endogenous testosterone. It exerts its effects at the genetic level by altering the transcriptional activities of specific genes that control the expression of the relevant proteins. After parenteral administration, nandrolone binds to androgen receptors and forms receptor complexes; these receptor complexes can then enter the cell nucleus and bind to the relevant nucleotide sequence of the chromosomal DNA. Once bound to chromosomal DNA, nandrolone is then able to promote the expression of the needed proteins though the modification of nuclear transcription in the cells.
Nandrolone decanoate shares the actions of endogenous androgens such as testosterone. Exogenous androgens such as nandrolone decanoate promote protein anabolism and stimulate appetite which results in a reversal of catabolic processes and negative nitrogen balance. Increases in lean body mass in patients with cachexia (e.g., malnourished dialysis patients) and decreased bone resorption and increased bone density in patients with osteoporosis are often noted. Blood glucose, erythrocyte production, and the balance of calcium are also affected by androgens. Increased erythrocyte production is apparently due to enhanced production of erythropoietic stimulating factor. Patients with anemia associated with renal disease will have increases in red blood cell volume and hemoglobin after receiving nandrolone decanoate.
Since nandrolone decanoate has actions similar to endogenous androgens, administration of nandrolone decanoate has the possibility of causing serious disturbances of growth and sexual development if given to young children and causing unwanted adverse effects in women. Exogenous androgens suppress gonadotropin-releasing hormone, thereby reducing the gonadotropic function of the pituitary through a negative-feedback mechanism. This results in a reduction of endogenous testosterone, luteinizing hormone, and follicle-stimulating hormone. Exogenous androgens may also have a direct effect on the testes. Reversible increases in low-density lipoproteins (LDL) and decreases in high-density lipoproteins (HDL) also occur.
Testosterone Cypionate / Testosterone Enanthate
Endogenous testosterone is responsible for sexual maturation at all stages of development throughout life. Synthetically, it is prepared from cholesterol. The function of androgens in male development begins in the fetus, is crucial during puberty, and continues to play an important role in the adult male. Women also secrete small amounts of testosterone from the ovaries. The secretion of androgens from the adrenal cortex is insufficient to maintain male sexuality.
Increased androgen plasma concentrations suppress gonadotropin-releasing hormone (reducing endogenous testosterone), luteinizing hormone, and follicle-stimulating hormone by a negative-feedback mechanism. Testosterone also affects the formation of erythropoietin, the balance of calcium, and blood glucose. Androgens have a high lipid solubility, enabling them to rapidly enter cells of target tissues. Within the cells, testosterone undergoes enzymatic conversion to 5-alpha-dihydrotestosterone and forms a loosely bound complex with cystolic receptors. Androgen action arises from the initiation of transcription and cellular changes in the nucleus brought about by this steroid-receptor complex.
Normally, endogenous androgens stimulate RNA polymerase, resulting in an increased protein production. These proteins are responsible for normal male sexual development, including the growth and maturation of the prostate, seminal vesicle, penis, and scrotum. During puberty, androgens cause a sudden increase in growth and development of muscle, with redistribution of body fat. Changes also take place in the larynx and vocal cords, deepening the voice. Puberty is completed with beard development and growth of body hair. Fusion of the epiphyses and termination of growth is also governed by the androgens, as is the maintenance of spermatogenesis. When endogenous androgens are unavailable, use of exogenous androgens are necessary for normal male growth and development.
Clinical Pharmacokinetics
Nandrolone decanoate is typically administered parenterally as an intramuscular injection. It undergoes an extensive hepatic first-pass metabolism in the liver and therefore has very low bioavailability when administered orally. In contrast, nandrolone administered parenterally as an intramuscular injection has a very high bioavailability.
Whether through oral or parenteral administration, nandrolone binds to androgen receptors within the body after its absorption. The androgen receptors, which are ligand-dependent nuclear transcription factors and located on the X chromosome, are expressed in a wide variety of tissues within the human body, such as bone, muscle, prostate, and adipose tissue, among others. Parenterally administered nandrolone has a half-life of about 6 – 12 days. This half-life may be even longer under some circumstances, such as liver or renal disease.
In the systemic circulation, nandrolone decanoate is rapidly hydrolyzed to free nandrolone by plasma esterases. Nandrolone has high lipid solubility and can rapidly diffuse into cells. Nandrolone is subsequently metabolized in the liver via reduction and oxidation which is similar to the metabolism of testosterone. Data on the excretion of the parent compound and metabolites are lacking. The plasma clearance of nandrolone is approximately 1.6 L/hour/kg and the elimination half-life of the parent compound is 6 to 8 days.
Metabolism of nandrolone decanoate occurs primarily in the liver and happens in two phases: phase I and phase II. In phase I, the enzymatic reactions involve the actions of the enzymes 5-alpha and 5-beta reductases, 3-alpha and 3-beta hydroxysteroid dehydrogenases, and 17-beta hydroxysteroid dehydrogenases. Phase II of nandrolone decanoate metabolism occurs after the conclusion of phase I and involves the conjugation of the phase I metabolites with glucuronic acid or sulfate. The primary breakdown product that arises from the metabolism or nandrolone is 19-norandrosterone. Other breakdown compounds that may also be produced due to the metabolism of nandrolone decanoate include 5-alphadihydronandrolone, 19-norandrosterone, and 19-norethiocholanolone.
Following its metabolism in the liver, nandrolone decanoate is excreted from the body in the urine through the kidneys. The metabolites of nandrolone can be detected for a long time following the administration of parenteral nandrolone injection to the individual. The approximate length of time that nandrolone metabolites can be detected in urine is 33 days; however, some studies have shown that these metabolites may persist in the urine for up to 60 days after receiving an intramuscular injection of nandrolone.
Route-Specific Pharmacokinetics:
Intramuscular Route: Following intramuscular injection, nandrolone decanoate is slowly released from the intramuscular depot at a relatively constant rate over approximately 4 days. A 100-mg dose produces peak serum concentrations in 3—6 days.
Testosterone Cypionate / Testosterone Enanthate
Testosterone is administered intramuscularly (IM), to the skin as a topical gel, solution, ointment or transdermal systems for transdermal absorption, by implantation of long-acting pellets, or via buccal systems.
Testosterone is administered intramuscularly (IM); via subcutaneous injection; to the skin as a topical gel, solution, ointment or transdermal systems for transdermal absorption; by implantation of long-acting pellets, or; via buccal systems.
In serum, testosterone is bound to protein. It has a high affinity for sex hormone binding globulin (SHBG) and a low affinity for albumin. The albumin-bound portion freely dissociates. The affinity for SHBG changes throughout life. It is high during prepuberty, declines during adolescence and adult life, then rises again in old age. The active metabolite DHT has a greater affinity for SHBG than testosterone. Elimination half-life is 10—100 minutes and is dependent on the amount of free testosterone in the plasma.
Testosterone is metabolized primarily in the liver to various 17-keto steroids. It is a substrate for hepatic cytochrome P450 (CYP) 3A4 isoenzyme. Estradiol and dihydrotestosterone (DHT) are the major active metabolites, and DHT undergoes further metabolism. Testosterone activity appears to depend on formation of DHT, which binds to cytosol receptor proteins. Further metabolism of DHT takes place in reproductive tissues. About 90% of an intramuscular testosterone dose is excreted in the urine as conjugates of glucuronic and sulfuric acids. About 6% is excreted in the feces, largely unconjugated. There is considerable variation in the half-life of testosterone as reported in the literature, ranging from 10 to 100 minutes.
Affected cytochrome P450 isoenzymes and drug transporters: CYP3A4, P-gp
Testosterone is a substrate for CYP3A4 and is also both transported by and an inhibitor of P-glycoprotein (P-gp) transport.
Route-Specific Pharmacokinetics:
Intramuscular Route: Parenteral testosterone formulations have been developed that reduce the rate of testosterone secretion, with esters being less polar and slowly absorbed from intramuscular sites. Esters have a duration of action of 2—4 weeks following IM administration. The esters are hydrolyzed to free testosterone, which is inactivated in the liver.
Precautions
Nandrolone Decanoate
Your health care provider needs to know if you have any of these conditions: breast cancer; diabetes; heart disease; kidney disease; liver disease; prostate trouble; an unusual or allergic reaction to nandrolone, other medicines, foods, dyes, or preservatives; pregnant or trying to get pregnant; breast-feeding. You will need to have blood work done while you are taking this medicine. This drug may affect blood sugar in patients with diabetes.
Nandrolone decanoate injections are administered intramuscularly only. Do not inject via intravenous administration. Nandrolone decanoate contains benzyl alcohol. Do not use this formulation in patients with benzyl alcohol hypersensitivity.
Androgen therapy (such as nandrolone) can result in loss of diabetic control and should be used with caution in patients with diabetes mellitus. Close monitoring of blood glucose is recommended.
Use of androgens (such as nandrolone) in children should be undertaken only with extreme caution. Androgens may accelerate bone maturation without stimulating compensatory linear growth, sometimes resulting in compromised adult stature. Radiographic examinations of the hand and wrist should be performed every 6 months to assess the rate of bone maturation and the effect of the drug on epiphyseal centers. Once the epiphyses have closed, growth is terminated. Even after discontinuation of treatment, epiphyseal closure can be enhanced for several months.
Nandrolone decanoate can stimulate the growth of cancerous tissue and should not be used in male patients with prostate cancer or breast cancer. Patients with prostatic hypertrophy should be treated with caution because of the possible development of malignancy.
Androgens (such as nandrolone) can induce osteolysis and should be used with caution in patients with hypercalcemia. Androgen-induced hypercalcemia occurs especially in immobile patients and those with metastatic breast cancer.
Alterations in the serum lipid profile consisting of decreased HDL and increased LDL occur with anabolic steroids including nandrolone. The drug should be used cautiously in patients with hypercholesterolemia and in those with cardiac disease especially in those with arteriosclerosis, coronary artery disease, and myocardial infarction. Monitoring of lipoprotein concentrations is recommended. During treatment with androgens, edema can occur because of sodium retention. Thus, this another reason to use nandrolone cautiously in patients with heart failure, peripheral edema, or severe cardiac disease.
During treatment with androgens, edema occurs because of fluid retention in association with sodium retention. Nandrolone decanoate is therefore contraindicated in patients withsevere hepatic disease and should be avoided in patients with severe renal disease because of possible exacerbation of these conditions. In addition, patients with nephrosis or nephrotic phase of nephritis should be treated with caution. Because androgenic anabolic steroids have been associated the development of peliosis hepatis and benign and malignant liver tumors (e.g., hepatocellular cancer), further cautions are warranted for patients with hepatic disease. Patients with hepatic disease or hepatic dysfunction also can be at risk of drug accumulation because of reduced clearance.
There are certain conditions under which nandrolone decanoate should not be administered or administered with extreme caution. Some of these circumstances include the following:
- Pregnancy: Pregnancy is an absolute contraindication for nandrolone decanoate administration. This drug can cause masculinization of the fetus and should not be administered to pregnant women.
- Cancer: Men with cancer of the breast or prostate or women who have breast cancer with associated hypercalcemia should not receive nandrolone decanoate injection. In women, this may cause the resorption of bones, making them more prone to fractures.
- Children: Nandrolone injections may speed up bone maturation in children without a corresponding increase in their vertical growth. These kids may suffer from a compromised physical stature such that they do not achieve their full growth potential.
- Women: Extreme care should be exercised if administering nandrolone decanoate injections to women. These women should be monitored closely for signs of virilization such as acne, clitoromegaly, hirsutism, and deepening of the voice. If any of these features are detected, the nandrolone injections should be discontinued immediately.
- Individuals with hepatic, renal, or cardiac diseases should be monitored very closely while receiving nandrolone decanoate injections.
This list may not include all possible contraindications.
Testosterone Cypionate / Testosterone Enanthate
Who should not take this medication? Children should not use testosterone unless directed otherwise by a physician. Your health care provider needs to know if you have any of these conditions: breast cancer; breathing problems while sleeping; diabetes; heart disease; if a female partner is pregnant or trying to get pregnant; kidney disease; liver disease; lung disease; prostate cancer, enlargement; any unusual or allergic reactions to testosterone or other products; pregnant or trying to get pregnant; breast-feeding. Your healthcare provider will need to have regular bloodwork drawn while on testosterone. This medication is banned from use in athltes by most athletic organizations.
Who should not take this medication? Children should not use testosterone unless directed otherwise by a physician. Your health care provider needs to know if you have any of these conditions: breast cancer; breathing problems while sleeping; diabetes; heart disease; if a female partner is pregnant or trying to get pregnant; kidney disease; liver disease; lung disease; prostate cancer, enlargement; any unusual or allergic reactions to testosterone or other products; pregnant or trying to get pregnant; breast-feeding. Your healthcare provider will need to have regular bloodwork drawn while on testosterone. This medication is banned from use in athletes by most athletic organizations.
The manufacturers of AndroGel and Striant state that their products are contraindicated in patients with soybean, soy, or soya lecithin hypersensitivity because they are derived partially from soy plants. Topical gels and solutions are typically flammable, therefore exposure to fire, flame, and tobacco smoking should be avoided while using any topical gel or solution formulation of testosterone. Testosterone undecanoate (Aveed) oil for injection contains benzyl benzoate, the ester of benzyl alcohol and benzoic acid, and refined castor oil. Therefore, testosterone undecanoate use is contraindicated in patients with polyoxyethylated castor oil hypersensitivity, benzoic acid hypersensitivity, or benzyl alcohol hypersensitivity.
Because some testosterone transdermal systems (e.g., Androderm) contain aluminum or other metal components, patients should be instructed to remove the patch before undergoing magnetic resonance imaging (MRI). Metal components contained in the backing of some transdermal systems can overheat during an MRI scan and cause skin burns in the area where the patch is adhered.
Testosterone injections are administered intramuscularly. Do not inject via intravenous administration. Respiratory adverse events have been reported immediately after intramuscular administration of testosterone enanthate and testosterone undecanoate. Care should be taken to ensure slow and deep gluteal muscle injection of testosterone.
Testosterone can stimulate the growth of cancerous tissue and is contraindicated in male patients with prostate cancer or breast cancer. Patients with prostatic hypertrophy should be treated with caution because androgen therapy may cause a worsening of the signs and symptoms of benign prostatic hypertrophy and may increase the risk for development of malignancy. Elderly patients and other patients with clinical or demographic characteristics that are recognized to be associated with an increased risk of prostate cancer should be evaluated for the presence of prostate cancer prior to initiation of testosterone replacement therapy. In patients receiving testosterone therapy, surveillance for prostate cancer should be consistent with current practices for eugonadal men. Testosterone replacement is not indicated in geriatric patients who have age-related hypogonadism only or andropause because there is insufficient safety and efficacy information to support such use. Additionally, the efficacy and long-term safety of testosterone topical solution in patients over 65 years of age has not been determined due to an insufficient number of geriatric patients involved in controlled trials. According to the Beers Criteria, testosterone is considered a potentially inappropriate medication (PIM) for use in geriatric patients and should be avoided due to the potential for cardiac problems and its contraindication in prostate cancer. The Beers expert panel considers use for moderate to severe hypogonadism to be acceptable.
Because of reduced drug clearance and an increased risk of drug accumulation, patients with hepatic disease or hepatic dysfunction should be prescribed testosterone with caution. In addition, edema secondary to water and sodium retention may occur during treatment with androgens. Use testosterone with caution in patients with hepatic disease; renal disease, including nephritis and nephrosis; preexisting edema; or cardiac disease, including heart failure, coronary artery disease, and myocardial infarction (MI), as fluid retention may aggravate these conditions. Further, the possible association between testosterone use and the increased risk of severe cardiovascular events, irrespective of pre-existing cardiac disease, is currently under investigation. An observational study in the U.S. Veteran Affairs health system included adult male patients of an average age of 60 years. Patients (n = 8709) undergoing coronary angiography with a recorded low serum testosterone concentration of < 300 ng/dl were included in the retrospective analysis. Within the larger cohort, testosterone therapy was initiated in 1223 males after a median of 531 days following coronary angiography; 7486 males did not receive testosterone therapy. Three years after coronary angiography, 25.7% of patients receiving testosterone therapy compared to 19.9% of patients not receiving therapy suffered a severe and/or fatal cardiovascular event (MI, stroke, death). A second observational study, investigated the incidence of acute non-fatal MI following an initial testosterone prescription in both younger (<= 55 years) and older (>= 65 years) adult males (n = 55,593). The incidence rate of MI occurring within 90 days following the initial testosterone prescription was compared to the incidence rate of MI occurring in the one year leading-up to the first prescription. Among older males, a 2-fold increase in the risk of MI was observed within the 90 day window; among younger males with a pre-existing history of cardiac disease, a 2- to 3-fold increased risk of MI was observed. In contrast, no increased risk was observed in younger males without a history of cardiac disease. In light of these findings, the FDA announced in early 2014 an examination into the possible link between testosterone therapy and severe cardiovascular events. The FDA has NOT concluded that FDA-approved testosterone treatment increases the risk of stroke, MI, or death. However, health care professionals are urged to carefully consider whether the benefits of treatment are likely to exceed the potential risks. The FDA will communicate their final conclusions and recommendations when the evaluation is complete.
The treatment of hypogonadal men with testosterone esters may potentiate sleep apnea, especially in patients that have risk factors for apnea such as obesity or chronic pulmonary disease. In addition, the safety and efficacy of testosterone topical solution and intranasal gel in obese males with BMI > 35 kg/m2 has not been established.
Patients receiving high doses of testosterone are at risk for polycythemia. Periodically, patients receiving testosterone should have their hemoglobin and hematocrit concentrations measured to detect polycythemia.
Testosterone is contraindicated during pregnancy because of probable adverse effects on the fetus (FDA pregnancy risk category X). Women of childbearing potential who are receiving testosterone treatments should utilize adequate contraception. Because testosterone is not used during pregnancy, there should be no particular reason to administer the products to women during labor or obstetric delivery; safety and efficacy in these settings have not been established.
Testim testosterone gel is specifically contraindicated in females; the drug is for males only; the dosage form supplies testosterone in excess of what should be prescribed to females under certain endocrine situations. In addition, Androgel, Androderm, Aveed, Fortesta, and Striant brand products are not indicated for use in females due to lack of controlled evaluations and/or the potential for virilizing effects. Female patients receiving other forms of testosterone therapy should be closely monitored for signs of virilization (deepening of the voice, hirsutism, acne, clitoromegaly, and menstrual irregularities). At high doses, virilization is common and is not prevented by concomitant use of estrogens. Some virilization may be judged to be acceptable during treatment for breast carcinoma; however, if mild virilism is evident, discontinuation of drug therapy is necessary to prevent long term virilization. Females should be aware that accidental exposure to some testosterone dosage forms (i.e., ointments, solutions, and gels) may occur if they come into direct contact with a treated patient. In clinical studies, within 2—12 hours of gel application by male subjects, 15-minute sessions of vigorous skin-to-skin contact with a female partner resulted in serum female testosterone levels > 2 times the female baseline values. When clothing covered the treated site on the male, the transfer of testosterone to the female was avoided. Accidental exposure to topical testosterone gel has also occurred in pediatric patients after contact between the child and the application site in treated individuals. The adverse events reported include genitalia enlargement, development of pubic hair, advanced bone age, increased libido, and aggressive behavior. Symptoms resolved in most patients when exposure to the product stopped. However, in a few patients, the genitalia enlargement and advanced bone age did not fully return to expected measurements. The FDA recommends taking precautions to minimize the potential for accidental exposure of topical testosterone products by washing hands with soap and warm water after each application, covering application site with clothing, and removing medication with soap and water when contact with another person is anticipated. In the case of direct skin-to-skin contact with the site of testosterone application, the non-treated person should wash the area with soap and water as soon as possible.
Testosterone topical solution, transdermal patches, and gels are contraindicated in lactating women who are breast-feeding. It is recommended that other testosterone formulations be avoided during breast-feeding as well. Testosterone distribution into breast milk has not been determined; it is unclear if exposure would increase above levels normally found in human milk. Significant exposure to this androgen via breast-feeding may have adverse androgenic effects on the infant and the drug may also interfere with proper establishment of lactation in the mother. Historically, testosterone/androgens have been used adjunctively for lactation suppression. Alternative methods to breast-feeding are recommended in lactating women receiving testosterone therapy.
Androgen therapy, such as testosterone, can result in loss of diabetic control and should be used with caution in patients with diabetes mellitus. Close monitoring of blood glucose is recommended.
Testosterone has induced osteolysis and should be used with caution in patients with hypercalcemia, which can be exacerbated in patients with metastatic breast cancer.
Administration of testosterone undecanoate has been associated with cases of serious pulmonary oil microembolism (POME) reactions as well anaphylactoid reactions. Reported cases of POME reactions occurred during or immediately after a 1000 mg intramuscular injection of testosterone undecanoate. Symptoms included: cough, urge to cough, dyspnea, hyperhidrosis, throat tightening, chest pain, dizziness, and syncope. Most cases lasted a few minutes and resolved with supportive measures; however, some lasted up to several hours, and some required emergency care and/or hospitalization. When administering testosterone undecanoate, clinicians should take care to inject deeply into the gluteal muscle, avoiding intravascular injection. In addition to POME reactions, episodes of anaphylaxis, including life-threatening reactions, have also been reported following the intramuscular injection of testosterone undecanoate. Patients with suspected hypersensitivity reactions should not be retreated with testosterone undecanoate. After every administration, monitor patient for 30 minutes and provide appropriate medical treatment in the event of serious POME or anaphylactoid reactions. Due to the risk of serious POME and anaphylaxis reactions, testosterone undecanoate (Aveed) is only available through a restricted program called the Aveed REMS Program. Clinicians wanting to prescribe Aveed, must be certified with the REMS Program for purposes of ordering or dispensing the product. Healthcare settings must also be certified with the REMS Program and must have the resources to provide emergency medical treatment in cases of serious POME and anaphylaxis. Further information is available at www.AveedREMS.com or call 1—855—755—0494.
Intranasal formulations of testosterone (e.g., Natesto) are not recommended for individuals with a history of nasal disorders such as nasal polyps; nasal septal perforation; nasal surgery; nasal trauma resulting in nasal fracture within the previous 6 months or nasal fracture that caused a deviated anterior nasal septum; sinus surgery or sinus disease. In addition, the safety and efficacy of intranasal testosterone has not been evaluated in individuals with mucosal inflammatory disorders such as Sjogren’s syndrome. Patients with rhinorrhea (rhinitis) who are receiving intranasal formulations of testosterone may experience decreased medication absorption secondary to nasal discharge. These patients may experience a blunted or impeded response to the intranasal medication. In clinical evaluation, serum total testosterone concentrations were decreased by 21—24% in males with symptomatic allergic rhinitis, whether treated with nasal decongestants or left untreated. Treatment with intranasal testosterone should be delayed until symptoms resolve in patients with nasal congestion, allergic rhinitis, or upper respiratory infection. If severe rhinitis symptoms persist, an alternative testosterone replacement therapy is advised.
The safety and efficacy of testosterone topical products Androgel, Axiron, Fortesta, and Testim as well as Striant buccal tablets, Natesto intranasal gel, and Aveed injectable testosterone undecenoate have not been established in neonates, infants, children, and adolescents < 18 years old. In addition, the safety and efficacy Depo-Testosterone injection has not be established in children < 12 years, and Androdem patches have not been evaluated in pediatric patients < 15 years. Generally, the use of testosterone in children should be undertaken only with extreme caution. Testosterone may accelerate bone maturation without stimulating compensatory linear growth, sometimes resulting in compromised adult stature. If testosterone is administered to prepubertal males, radiographic examinations of the hand and wrist should be performed every 6 months to assess the rate of bone maturation and the effect of the drug on epiphyseal centers. Once the epiphyses have closed, growth is terminated. Even after discontinuation of treatment, epiphyseal closure can be enhanced for several months. Accidental exposure to topical testosterone gel has also occurred in pediatric patients after skin to skin contact between the child and the application site in treated individuals. The adverse events reported include genitalia enlargement, development of pubic hair, advanced bone age, increased libido, and aggressive behavior. Symptoms resolved in most patients when exposure to the product stopped. However, in a few patients, the genitalia enlargement and advanced bone age did not fully return to expected measurements. The FDA recommends taking precautions to minimize the potential for accidental exposure by washing hands with soap and warm water after each application, covering application site with clothing, and removing medication with soap and water when contact with another person is anticipated. In the case of direct skin-to-skin contact with the site of testosterone application, the non-treated person should wash the area with soap and water as soon as possible.
Pregnancy
Nandrolone decanoate belongs to the Food and Drug Administration (FDA) category X. This means that studies done in humans or animals have demonstrated a positive risk of fetal abnormalities if this drug is administered to pregnant women and that the risks outweigh any benefits that may be gained through the administration of this drug. As such, nandrolone is absolutely contraindicated in pregnancy; women on this medication should stop receiving it as soon as possible if they become pregnant. Administration of nandrolone injections to pregnant women may lead to virilization of the fetus; this risk is especially high during the first trimester of pregnancy.
Nandrolone decanoate is absolutely contraindicated during pregnancy because of probable adverse effects on the fetus (FDA pregnancy category X). Androgenic anabolic steroids are known to cause embryotoxicity, fetotoxicity, and masculinization of female animal offspring. Nandrolone decanoate is contraindicated in females who are or may become pregnant. If nandrolone decanoate is used during pregnancy, or if the patient becomes pregnant while taking this drug, she should be apprised of the potential hazard to the fetus.
Testosterone Cypionate / Testosterone Enanthate
Testosterone is contraindicated during pregnancy because of probable adverse effects on the fetus (FDA pregnancy risk category X). Women of childbearing potential who are receiving testosterone treatments should utilize adequate contraception. Because testosterone is not used during pregnancy, there should be no particular reason to administer the products to women during labor or obstetric delivery; safety and efficacy in these settings have not been established.
Breast-Feeding
It is not known if anabolic steroids are excreted in human milk. Nandrolone is not indicated in females of childbearing potential; use during breast-feeding should be avoided because of the potential for serious adverse reactions in nursing infants. Alternative methods to breast-feeding are recommended.
Testosterone Cypionate / Testosterone Enanthate
Testosterone topical solution, transdermal patches, and gels are contraindicated in lactating women who are breast-feeding. It is recommended that other testosterone formulations be avoided during breast-feeding as well. Testosterone distribution into breast milk has not been determined; it is unclear if exposure would increase above levels normally found in human milk. Significant exposure to this androgen via breast-feeding may have adverse androgenic effects on the infant and the drug may also interfere with proper establishment of lactation in the mother. Historically, testosterone/androgens have been used adjunctively for lactation suppression. Alternative methods to breast-feeding are recommended in lactating women receiving testosterone therapy.
Drug Interactions
Possible interactions include: goserelin; leuprolide; medicines for diabetes; medicines for the prostate like dutasteride, finasteride, saw palmetto; warfarin. This list may not describe all possible interactions. Give your health care provider a list of all the medicines, herbs, non-prescription drugs, or dietary supplements you use. Some items may interact with your medicine.
Androgens can enhance the effects of anticoagulants. Dosage of the anticoagulant may have to be decreased in order to maintain prothrombin time at the desired therapeutic level. When anabolic steroid or androgen therapy is started or stopped in patients on anticoagulant therapy, close monitoring is required. Additionally, nandrolone decanoate may generate a pharmacodynamic interaction with warfarin by independently affecting the activity of circulating coagulation proteins. Androgens reduce the amount or activity of circulating coagulant proteins thereby enhancing the anticoagulant effect of warfarin.
The actions of androgens could be antagonized by 5-alpha reductase inhibitors (i.e., dutasteride, finasteride). Avoid concurrent use of androgens with 5-alpha-reductase inhibitors.
Drug interactions with Saw palmetto, Serenoa repens have not been specifically studied or reported. Saw palmetto extracts appear to have antiandrogenic effects. The antiandrogenic effects of Saw palmetto, Serenoa repens would be expected to antagonize the actions of androgens; it would seem illogical for patients taking androgens to use this herbal supplement.
Exogenously administered androgens (testosterone derivatives or anabolic steroids) have variable effects on blood glucose control in patients with diabetes mellitus. In general, low testosterone concentrations are associated with insulin resistance. Further, when hypogonadal men (with or without diabetes) are administered exogenous androgens, glycemic control typically improves as indicated by significant reductions in fasting plasma glucose concentrations and HbA1c. In one study in men with diabetes, testosterone undecenoate 120 mg PO/day for 3 months decreased HbA1c concentrations from a baseline of 10.4% to 8.6% (P<0.05); fasting plasma glucose concentrations decreased from 8 mmol/l at baseline to 6 mmol/l (P<0.05). Significant reductions in HbA1c and fasting plasma glucose concentrations did not occur in patients taking placebo. Similar results have been demonstrated with intramuscular testosterone 200 mg administered every 2 weeks for 3 months in hypogonadal men with diabetes. In healthy men, testosterone enanthate 300 mg IM/week for 6 weeks or nandrolone 300 mg/week IM for 6 weeks did not adversely affect glycemic control; however, nandrolone improved non-insulin mediated glucose disposal. It should be noted that some studies have shown that testosterone supplementation in hypogonadal men has no effect on glycemic control. Conversely, the administration of large doses of anabolic steroids in power lifters decreased glucose tolerance, possibly through inducing insulin resistance.10 While data are conflicting, it would be prudent to monitor all patients with type 2 diabetes on antidiabetic agents receiving androgens for changes in glycemic control, regardless of endogenous testosterone concentrations. Hypoglycemia or hyperglycemia can occur; dosage adjustments of the antidiabetic agent may be necessary.
Based on case reports with methyltestosterone and danazol, androgens may increase plasma concentrations of cyclosporine, leading to a greater risk of nephrotoxicity.
Increased fluid retention may occur with concomitant nandrolone decanoate and corticosteroid use. Corticosteroids with greater mineralocorticoid activity such as fludrocortisone are more likely to cause edema.
Androgens may be necessary to assist in the growth response to human growth hormone, but excessive doses of androgens in prepubescent males can accelerate epiphyseal maturation.
Goserelin and leuprolide inhibit steroidogenesis. Concomitant use of nandrolone decanoate with goserelin or leuprolide is relatively contraindicated and would defeat the purpose of goserelin or leuprolide therapy.
Androgens are known to stimulate erythropoiesis. Despite the fact that endogenous generation of erythropoietin is depressed in patients with chronic renal failure, other tissues besides the kidney can synthesize erythropoietin, albeit in small amounts. Concurrent administration of androgens can increase the patient’s response to epoetin alfa, reducing the amount required to treat anemia. Because adverse reactions to epoetin alfa have been associated with an abrupt increase in blood viscosity, this drug combination should be avoided, if possible. Further evaluation of this combination needs to be made.
In vitro, both genistein and daidzein inhibit 5 alpha-reductase isoenzyme II, resulting in decreased conversion of testosterone to the potent androgen 5-alpha-dihydrotestosterone (DHT) and a subsequent reduction in testosterone-dependent tissue proliferation. The action is similar to that of finasteride, but is thought to be less potent. Theoretically, because the soy isoflavones appear to inhibit type II 5-alpha-reductase, the soy isoflavones may counteract the activity of the androgens.
This list may not include all possible drug interactions. Give your health care provider a list of all the medicines, herbs, non-prescription drugs, or dietary supplements you use. Also tell them if you smoke, drink alcohol, or use illegal drugs. Some items may interact with your medicine.
Testosterone Cypionate / Testosterone Enanthate
Possible interactions include: certain medicines for diabetes; certain medicines that treat or prevent blood clots like warfarin; oxyphenbutazone; propranolol; steroid medicines like prednisone or cortisone. This list may not describe all possible interactions.
Nandrolone Decanoate / Testosterone Cypionate / Testosterone Enanthate Injection Side Effects & Reactions
There are a variety of side effects that could occur in individuals who receive nandrolone decanoate injections. Some of these reactions include, but are not limited to, the following:
- Enlargement of the prostate in elderly men.
- Reduced sperm count and volume in men.
- Hepatitis and hepatocellular carcinoma may occur at high doses. A rare but life-threatening liver disease known as peliosis hepatis may also occur.
- Females may experience the signs of virilization previously mentioned as well as menstrual abnormalities. These effects are reversible if the medication is discontinued promptly.
- In prepubertal children, nandrolone may cause premature closing of the growth plates, which may result in stunted growth.
- There may be alterations in blood clotting factors in individuals receiving nandrolone decanoate injections, which may impair clotting times. Patients on anticoagulants should be closely monitored for bleeding abnormalities while receiving nandrolone decanoate injections.
- Patients may exhibit psychiatric effects such as depression, insomnia, and mania while on nandrolone injections.
- In the renal system, there may be increased retention of water, potassium, nitrogen, chloride, and calcium. The retention of these electrolytes may result in edema.
- Some patients may experience gastrointestinal disturbances, such as nausea, vomiting, and diarrhea.
- Significant increases in low-density lipoproteins (LDL) with a corresponding decrease in high-density lipoproteins may occur in individuals receiving nandrolone injections.
- Change in sex drive or performance; diarrhea; hair loss; headache; trouble sleeping.
This list may not describe all possible side effects. Call your health care provider immediately if you are experiencing any signs of an allergic reaction: allergic reactions like skin rash, itching or hives, swelling of the face, lips, or tongue; breast lump; breathing problems; changes in mood, especially anger, depression, or rage; change in voice; dark urine; increase in facial hair; irregular menstrual periods; acne, nausea, vomiting; stomach pain; swelling in ankles or legs; trouble passing urine or change in the amount of urine; yellowing of the eyes or skin. Menstrual irregularity can occur with nandrolone decanoate therapy in females. Disruption of the regular menstrual cycle secondary to nandrolone decanoate-induced suppression of gonadotropin secretion can lead to amenorrhea or oligomenorrhea.
When androgens (such as nandrolone) are given to women, virilization, manifested by acne, hirsutism, clitoromegaly, male pattern baldness, reduced breast size, and deepening of the voice or hoarseness, can occur. If treatment is discontinued when these symptoms first appear, they usually subside. Prolonged treatment can lead to irreversible masculinity, so the benefit of treatment should be measured against the risk.
Androgens can cause teratogenesis. Androgens are classified as pregnancy category X, and are absolutely contraindicated during pregnancy because of probable adverse effects on the fetus. Androgenic anabolic steroids such as nandrolone decanoate are known to cause embryotoxicity, fetotoxicity, and masculinization of female animal offspring. Nandrolone decanoate is contraindicated in women who are or may become pregnant.
In males:
Male patients can experience feminization during prolonged therapy with nandrolone decanoate, which is believed to result from inhibition of gonadotropin secretion and conversion of androgens to estrogens. These effects are more pronounced in patients with concurrent hepatic disease and include mastalgia and gynecomastia. Feminizing effects are generally reversible. Inhibition of testicular function, testicular atrophy, impotence (erectile dysfunction), epididymitis, and bladder irritation can also occur.
Priapism and excessive sexual stimulation, more common in geriatric males, are generally the effect of excessive nandrolone decanoate dosage. Oligospermia and decreased ejaculate volume may occur in patients receiving long-term therapy or excessive doses. Alopecia resembling male pattern baldness has also occurred.
Prostate cancer as a secondary malignancy or prostatic hypertrophy can develop during prolonged therapy with nandrolone decanoate and are more likely to occur in elderly males. Signs of acute epididymitis (e.g., fever, chills, pain in the inguinal region) and/or urinary urgency should prompt withdrawal of the drug and reevaluation of dosage.
In prepubescent males: When androgens (such as nandrolone) are used in the treatment of immature males, early virilism can be a disadvantage because it is accompanied by premature epiphyseal closure. Monitoring of skeletal maturation should be undertaken at about 6-month intervals. Once the epiphyses have closed, growth is terminated. Even after discontinuation of treatment, epiphyseal closure can be enhanced for several months. Penile enlargement and an increased frequency of erections can also occur.
In males and females:
Peripheral edema can occur with nandrolone use as the result of increased fluid retention (in association with sodium retention) and is manifested by weight gain. In the treatment of patients with impaired renal function or congestive heart failure, the fluid retention is of greater significance. Other serum electrolytes (i.e., calcium, chloride, phosphate, and potassium) are also retained.
Androgen therapy (such as nandrolone) is related to growth and secretion of the sebaceous glands, which can cause an acneiform rash indistinguishable from acne vulgaris.
Hepatic dysfunction can occur from use of androgenic anabolic steroids (such as nandrolone) and have been shown to be more significant with administration of the oral 17-alpha-alkylandrogens (e.g., methyltestosterone). Cholestatic jaundice with, rarely, hepatic necrosis and death have been reported. Elevated hepatic enzymes are more common than overt jaundice. The drug should be discontinued if cholestatic jaundice or hepatitis occurs. Peliosis hepatis, a condition characterized by splenic tissue being replaced by blood filled cysts, has occurred in patients receiving androgenic anabolic steroids. The cysts are sometimes present with minimal hepatic dysfunction, but may be associated with hepatic failure. They are often not noticeable until life-threatening hepatic failure or intra-abdominal hemorrhage develops. Discontinuation of steroid therapy usually results in complete disappearance of cysts. Hepatoma also occurs rarely and is usually benign and androgen-dependent; life-threatening malignant hepatoma has been reported. Withdrawal of drug often results in regression or cessation of progression of the tumors. However, hepatomas associated with androgens or anabolic steroids are much more vascular than other hepatic tumors and may be undetected until life-threatening intra-abdominal hemorrhage develops. Androgen therapy (such as nandrolone) has induced osteolysis and can exacerbate hypercalcemia. Androgen-induced hypercalcemia occurs especially in immobile patients and those with metastatic carcinoma of the breast.
Observational studies in post-menopausal women, bodybuilders, and weightlifters using anabolic steroids have revealed ‘pro-atherogenic’ changes in lipid profiles, including decreases in HDL concentrations and increases in LDL concentrations. Synthetic androgens may produce a greater lowering of the HDL-C:LDL-C ratio than does testosterone. Oral anabolic steroids (e.g., stanozolol) may produce greater changes than parenteral ones. Although the implications of androgen-induced (such as nandrolone) hypercholesterolemia are unclear, caution should be exercised, particularly in patients predisposed to dyslipidemias or atherosclerosis.
Androgen therapy (such as nandrolone) can produce libido decrease or libido increase. Geriatric males have been found to be more likely to experience excessive sexual stimulation.
Miscellaneous adverse reactions to nandrolone decanoate therapy have included decreased glucose tolerance, diarrhea, edema, excitability, habituation, increased CPK and creatinine, insomnia, mental depression, nausea and vomiting.
Intramuscular administration of anabolic steroids (such as nandrolone) can cause inflammation, urticaria, postinjection induration and furunculosis. Patients should be observed for any signs of an injection site reaction.
Anabolic steroids (such as nandrolone) may cause suppression of clotting factors II, V, VII, and X. Prolonged bleeding time may occur. This list may not include all possible adverse reactions or side effects. Call your health care provider immediately if you are experiencing any signs of an allergic reaction: skin rash, itching or hives, swelling of the face, lips, or tongue, blue tint to skin, chest tightness, pain, difficulty breathing, wheezing, dizziness, red, a swollen painful area/areas on the leg.
Testosterone Cypionate / Testosterone Enanthate
Male patients can experience feminization during prolonged therapy with testosterone, which is believed to result from inhibition of gonadotropin secretion and conversion of androgens to estrogens. These effects are more pronounced in male patients with concurrent hepatic disease and include mastalgia and gynecomastia. In clinical evaluation of testosterone gel, gynecomastia (Testim: 1%; Androgel: 1—3%) and mastalgia (Androgel: 1—3%) were reported. Mastalgia and increased blood testosterone were reported in less than 1% of patients taking Axiron. Feminizing effects of testosterone are generally reversible. During exogenous administration of androgens, endogenous testosterone release is inhibited through feedback inhibition of pituitary luteinizing hormone (LH). At large doses of exogenous androgens, spermatogenesis inhibition may occur through feedback inhibition of pituitary follicle stimulating hormone (FSH). Similar to other testosterone therapies, decreased serum testosterone and oligospermia have been reported during post approval surveillance of testosterone topical gel.
Testosterone therapy can produce libido decrease or libido increase. In clinical evaluation of testosterone gel (Androgel), libido decrease was reported in 1—3% of patients. Priapism and excessive sexual stimulation, more common in geriatric males, are generally the effect of excessive testosterone dosage. In 205 patients receiving testosterone gel (Testim 50 or 100 mg daily), spontaneous penile erection (1%) was reported. During post approval experience with testosterone topical gel (Fortesta), priapism as well as impotence (erectile dysfunction) were reported.
Prostatic hypertrophy may develop during prolonged therapy with testosterone and these events are more likely to occur in elderly male patients. In 205 patients receiving testosterone gel (Testim 50 or 100 mg daily), benign prostatic hyperplasia, BPH was reported in 1% of patients. Clinical trials for testosterone patch (Androderm) include reports of unspecified prostate abnormalities in 5% of patients. Prostate neoplasm was reported in fewer than 1% of patients taking Axiron. In addition, increases in serum PSA concentrations have been reported in clinical trials for testosterone topical solution (Axiron: 1—4%), topical gel (Fortesta: 1.3%), and intranasal gel (Natesto: 5.1—5.8%). In a 180 Day, Phase 3 study of testosterone gel (Androgel), prostate disorder (3—5%) including enlarged prostate, BPH, and elevated PSA were reported; testis disorder (1.9—3%) including left varicocele and slight testicular sensitivity were also reported. In 162 hypogonadal men receiving testosterone gel (Androgel) during a 3-year open-label extension trial, increases in serum PSA concentrations (defined as >= 2x baseline concentrations or any single absolute value >= 6 ng/ml) were seen in approximately 18% of patients (n = 29). The majority of these increases were seen in the first year of therapy (23/29 or 79%). Four patients had a single value >= 6 ng/ml: 2 of these patients had prostate cancer detected upon biopsy. In the same study population, enlarged prostate and urinary symptoms including nocturia, urinary hesitancy, urinary incontinence, urinary retention, urinary urgency and weak urinary stream were also reported. Finally, 1 patient reported prostate disorder requiring a transurethral resection of the prostate (TURP) considered possibly related to treatment by investigators. Dysuria and hematuria have also been reported during postmarketing surveillance of testosterone therapy. Hematuria (< 3%), prostatitis (< 3%), and polyuria (< 3%) have been reported in patients receiving Androderm. In patients receiving testosterone therapy, surveillance for prostate cancer (as a secondary malignancy) should be consistent with current practices for eugonadal men. Signs of acute epididymitis (e.g., pyrexia, pain in the inguinal region) and/or urinary urgency should prompt withdrawal of the drug and reevaluation of dosage.
When androgens are given to females, virilization, manifested by acne, the growth of facial hair or an unwanted excess of body hair (hirsutism), enlarged clitoris, reduced breast size, and deepening of the voice, can occur. If testosterone treatment is discontinued when these symptoms first appear, they usually subside. Dermatologic reactions reported post-approval or in < 1% of patients using testosterone gel, regardless of brand, included hirsutism. Prolonged treatment can lead to irreversible masculinity, so the benefit of treatment should be measured against the risk. Disruption of the regular menstrual cycle secondary to testosterone-induced suppression of gonadotropin secretion can lead to amenorrhea or oligomenorrhea. Testosterone is associated with teratogenesis and may cause fetal harm. Exposure of a fetus (male or female) to androgens may result in varying degrees of virilization. Care should be taken to avoid exposure to testosterone during pregnancy, including via transfer of topical forms from male to female partners.
Topical testosterone products are associated with application site skin reactions. In clinical studies with testosterone patch (Androderm), transient mild to moderate erythema was observed at the site of application in the majority of patients at some time during treatment. The overall incidence of application site reactions of any kind was 28% (10 subjects with 13 adverse reactions). Application site adverse events reported include: pruritus (17—37%), burn-like blister reaction under system (12%), erythema (< 7%), exfoliation (< 3%), vesicular rash (6%), allergic contact dermatitis to the system (4%), burning (3%), and induration (3%); general rash (unspecified) (2%) was also reported. Blisters reported during trails sometimes involved bullous rash, skin necrosis, or the development of a skin ulcer. The majority of the lesions were found in cases where the patch was placed over bony prominences or on parts of the body that may have been subject to prolonged pressure during sleep or sitting. Other dermatological reactions at the application site, occurring in <1% of patients include: bullous rash, mechanical irritation, rash (unspecified), and contamination. Chronic skin irritation resulted in 5% of patients discontinuing treatment. Mild skin irritation may be ameliorated by treatment of affected skin with over-the-counter topical hydrocortisone cream applied after transdermal system removal. Additionally, applying a small amount of 0.1% triamcinolone acetonide cream to the skin under the central drug reservoir of the transdermal system has been shown to reduce the incidence and severity of skin irritation. The administration of 0.1% triamcinolone acetonide cream does not significantly alter transdermal absorption of testosterone from the system; ointment triamcinolone formulations should not be used for pretreatment as they may significantly reduce testosterone absorption. Dermatological reactions seen during testosterone topical solution (Axiron) clinical trials include: application site skin irritation (7—8%), erythema (5—7%), and folliculitis (< 1%). Other less common adverse reactions include: general erythema (< 1%) and application site edema and warmth (reported in at least 2 patients). Application site reactions have also been reported for testosterone gel (Fortesta: 16.1%; Androgel: 3—5.6%; Testim: 2—4%). Other dermatological reactions reported during clinical trials with testosterone gel (Androgel) include: xerosis (1.9%), acne (1—8%), and pruritis (1.9%). Contact dermatitis was reported in 2.1% of patients treated with testosterone gel (Androgel 1.62%). All testosterone therapy influences the growth and secretion of the sebaceous glands, which can cause seborrhea and acne indistinguishable from acne vulgaris. Acne vulgaris (> 1%) was reported in a clinical evaluation of testosterone solution (Axiron). Alopecia resembling male pattern baldness has also occurred in patients receiving long-term therapy or excessive testosterone doses. Dermatologic reactions reported post-approval or in < 1% of patients using testosterone gel, regardless of brand, include: acne, allergic dermatitis, diaphoresis, alopecia, erythema, hair discoloration, maculopapular rash, paresthesias, pruritus, rash (unspecified), skin irritation, swelling, and xerosis. During clinical evaluation and post marketing surveillance, hyperhidrosis (1.3%) was reported among patients receiving testosterone undecanoate.
The testosterone buccal mucoadhesive system can cause dental pain, such as gum or mouth irritation (9.2%), a bitter taste in the mouth (dysgeusia, 4.1%), gum pain (3.1%), gum tenderness (3.1%), gum edema (2%), or taste perversion (dysgeusia, 2%). The majority of gum-related adverse events were transient; gum irritation generally resolved in 1—8 days and gum tenderness resolved in 1—14 days. The following adverse events occurred in 1 patient during clinical trials: buccal mucosal roughening, gingivitis, gum blister, nose edema, stinging of lips, and toothache. In clinical trials, 4.1% of patients discontinued treatment due to gum or mouth-related adverse events. Gum examinations were conducted in one study to assess for gingivitis, gum edema, oral lesions, oral ulceration, or leukoplakia with no new or worsening cases of any of these anomalies reported. In two long-term extension trials, the following adverse events occurred in 1 patient each: buccal inflammation, xerostomia, gum redness, stomatitis, taste bitter/ taste perversion (dysgeusia), and toothache. Dysgeusia (reported as taste disorder) was reported in 1% of patients receiving testosterone gel (Testim) and judged possibly, probably, or definitely related to the study drug. However, dysgeusia has not been noted as a side effect with other topical or injectable testosterone products and topically applied and systemic testosterone are not recognized as a common cause of taste disturbance.
Early exposure to pharmaceutical doses of testosterone or other androgens in pre-pubertal males can induce virilism which can be a disadvantage because it is accompanied by premature epiphyseal closure. Once the epiphyses have closed, growth is terminated. Monitoring of skeletal maturation should be undertaken at about 6-month intervals. Once the epiphyses have closed, growth is terminated. Even after discontinuation of testosterone treatment, epiphyseal closure can be enhanced for several months.
Early exposure to pharmaceutical doses of testosterone or other androgens in pre-pubertal males can induce virilism which can be a disadvantage because it is accompanied by premature epiphyseal closure. Once the epiphyses have closed, growth is terminated. Monitoring of skeletal maturation should be undertaken at about 6-month intervals. Once the epiphyses have closed, growth is terminated. Even after discontinuation of testosterone treatment, epiphyseal closure can be enhanced for several months.
Androgen therapy has been associated with retention of sodium, chloride, water, potassium, and inorganic phosphates. Peripheral edema can occur as the result of increased fluid retention (in association with sodium chloride) and may be manifested by weight gain. These effects may be more prominent earlier in androgen therapy. If normal therapeutic testosterone doses are used in the treatment of hypogonadism, only a moderate amount of fluid retention occurs. In the treatment of patients with impaired renal function or congestive heart failure, the fluid retention is of greater significance. Animal models suggest the ability of testosterone to induce blood pressure increases and to alter naturesis thus affecting vasoconstriction and stimulation of the renin-angiotensin-aldosterone system. Therefore, androgens may affect blood pressure; however, the current role of testosterone in blood pressure regulation is not well understood. Hypertension has been reported during clinical evaluation as well as post-approval surveillance of testosterone therapy. In clinical studies, 2.1—3% of patients receiving testosterone gel (Androgel) reported hypertension. Hypertension (1%) as well as decreased diastolic pressure (1%) were reported in trials involving testosterone gel (Testim). Hypertension (>1%) was reported in patients using testosterone topical solution (Axiron). In addition to affecting blood pressure, androgens may affect the prevalence of cardiovascular disease. The possible association between testosterone use and the increased risk of severe cardiovascular events, irrespective of pre-existing cardiac disease, is currently under investigation. An observational study in the U.S. Veteran Affairs health system included adult male patients of an average age of 60 years. Patients (n = 8709) undergoing coronary angiography with a recorded low serum testosterone concentration of < 300 ng/dl were included in the retrospective analysis. Within the larger cohort, testosterone therapy was initiated in 1223 males after a median of 531 days following coronary angiography; 7486 males did not receive testosterone therapy. Three years after coronary angiography, 25.7% of patients receiving testosterone therapy compared to 19.9% of patients not receiving therapy suffered a severe and/or fatal cardiovascular event (myocardial infarction, stroke, death). A second observational study, investigated the incidence of acute non-fatal myocardial infarction (MI) following an initial testosterone prescription in both younger (<= 55 years) and older (>= 65 years) adult males (n = 55,593). The incidence rate of MI occurring within 90 days following the initial testosterone prescription was compared to the incidence rate of MI occurring in the one year leading-up to the first prescription. Among older males, a 2-fold increase in the risk of MI was observed within the 90 day window; among younger males with a pre-existing history of cardiac disease, a 2- to 3-fold increased risk of MI was observed. In contrast, no increased risk was observed in younger males without a history of cardiac disease. In light of these findings, the FDA announced in early 2014 an examination into the possible link between testosterone therapy and severe cardiovascular events. The FDA has NOT concluded that FDA-approved testosterone treatment increases the risk of stroke, MI, or death. However, health care professionals are urged to carefully consider whether the benefits of treatment are likely to exceed the potential risks. The FDA will communicate their final conclusions and recommendations when the evaluation is complete.
Hepatic dysfunction can occur from use of certain androgens; therefore, periodic liver function test monitoring is advised. With use as prescribed, elevated hepatic enzymes are more likely to occur than overt jaundice or other liver dysfunction, which are rare with testosterone use in general. Adverse hepatic effects are more likely with administration 17-alpha-alkylandrogens (e.g., methyltestosterone) or with abuse of such androgenic hormones by athletes, where abuse results in liver changes consistent with fatty liver disease (steatosis) in an estimated 2.4% of individuals, even in the absence of other risk factors for fatty liver. Testosterone should be discontinued if cholestatic jaundice or hepatitis or other adverse liver dysfunction occurs. Peliosis hepatis and hepatic neoplasms occur rarely, but when they do, they are potentially life-threatening.
Headache has been reported in several testosterone therapy trials; incidence rates of headache range from 1—6%, regardless of formulation. Some incidences of mood alterations including emotional lability (< 3%), confusion (1%), depression (1—3%), nervousness (1—3%), anxiety (> 1%), anger (> 1%), asthenia (<1%), hostility (<1%), and mood swings (1%) have also been reported across several testosterone studies. Abnormal dreams (Fortesta: 1.3%) and insomnia (Testim: 1%) have been reported in patients receiving testosterone gel. Hot flashes or flushing (Testim: 1%) and asthenia (Androgel: 1—3%) were also reported for patients receiving testosterone. Diarrhea (3—4%) and vomiting (3—4%) have been reported among patients receiving testosterone solution (Axiron). Diarrhea (< 3%), gastroesophageal reflux disease (< 3%), back pain (6%), chills (< 3%), fatigue (< 3%) have been reported in patients receiving Androderm transdermal patch. Miscellaneous adverse reactions reported post-approval or in < 1% of patients using exogenous testosterone, regardless of formulation include: abdominal pain (cramps), abnormal renal function, appetite stimulation, asthma, dizziness, hyperglycemia, increased lacrimation, malaise, nausea, pain in extremity (musculoskeletal pain), pelvic pain, and vitreous detachment. Other miscellaneous reactions reported during post approval surveillance of testosterone undecenoate include: sudden hearing loss, tinnitus, and myalgia.
Testosterone therapy has induced osteolysis and can exacerbate hypercalcemia. Androgen-induced hypercalcemia occurs especially in immobile patients and those with metastatic carcinoma of the breast. Skeletal adverse reactions reported during post approval surveillance of testosterone undecanoate included osteopenia and osteoporosis.
Testosterone may cause undesirable changes in serum lipid profiles, including hypercholesterolemia or hypertriglyceridemia. Periodic monitoring of lipid profiles may be desirable during treatment. Observational studies in post-menopausal women, bodybuilders, and weightlifters using anabolic steroids have revealed ‘pro-atherogenic’ changes in lipid profiles, including decreases in HDL concentrations and increases in LDL concentrations. Synthetic androgens may produce a greater lowering of the HDL-C:LDL-C ratio than does testosterone. Although the implications of androgen-induced hypercholesterolemia are unclear, caution should be exercised, particularly in patients predisposed to dyslipidemia or atherosclerosis. If lipid changes are significant, dose adjustment of testosterone or lipid lowering drugs or discontinuation of testosterone treatment may be needed; individualize therapy.
Testosterone has a stimulatory effect on the formation of erythropoietin. Increased erythropoiesis, especially in women, can lead to erythrocytosis, secondary polycythemia, and its complications including: dizziness, migraine, tiredness (fatigue), unusual bleeding, flushing, or redness of the skin. Patients receiving high doses of testosterone are at risk for polycythemia. In clinical evaluation of testosterone solution (Axiron), increases in red blood cell count (< 1%), hematocrit (4—7%), and hemoglobin (> 1%) were reported. In studies of testosterone gel (Testim), patients receiving a 100 mg dose had clinically notable increases in both hematocrit (2.8%) and hemoglobin (2.3%). Likewise, 2.1% of patients treated with testosterone gel (Androgel 1.62%) reported increased hematocrit or hemoglobin. In intranasal testosterone gel analysis, 4 of 306 exposed patients developed a hematocrit level > 55% (baseline: 48—51%; did not exceed 58%). Therefore, periodic hemoglobin and hematocrit determinations should be considered in patients receiving long-term testosterone therapy. In general, testosterone therapy has been associated with suppression of clotting factors II, V, VII, and X and bleeding in patients on concomitant anticoagulant therapy. GI bleeding was reported in 2% of patients receiving testosterone patch (Androderm) therapy during clinical evaluation. Hemarthrosis (< 3%) has also been reported Androderm. During postmarketing surveillance of testosterone gel (Testim), prolonged aPPT and PT and prolonged bleeding time were reported. Anemia was reported in 2.5% of patients receiving testosterone gel (Androgel) during clinical evaluation. An increased risk of deep vein thrombosis (DVT) and acute pulmonary embolism (PE) is associated with testosterone use; events have been reported during post-marketing surveillance. Discontinue treatment with testosterone in patients reporting pain, swelling, warmth, and redness in the leg (DVT) or chest pain, trouble breathing, and cough (PE) and examine for possible VTE. Other miscellaneous reactions reported during post approval surveillance of testosterone undecenoate include: thrombocytopenia, hyperparathyroidism, and hypoglycemia.
Intramuscular administration of anabolic steroids can cause inflammation, erythema, urticaria, post injection pain, induration and furunculosis. Inflammation and pain at the site of insertion of testosterone implant pellets is possible. Testosterone pellets may also slough out from the insertion site, which is usually secondary to superficial implantation or aseptic technique. Patients should be observed for any signs of an injection site reaction.
Few cases of anaphylactoid reactions have been reported in association with oral and injectable testosterone therapy. Administration of testosterone undecanoate has been associated with cases of pulmonary embolism, specifically serious pulmonary oil microembolism (POME) reactions as well anaphylactoid reactions. Reported cases of POME reactions occurred during or immediately after a 1000 mg intramuscular injection of testosterone undecanoate. Symptoms included: cough, urge to cough, dyspnea, hyperhidrosis, throat tightening (acute bronchospasm), chest pain, dizziness, and syncope. Most cases lasted a few minutes and resolved with supportive measures; however, some lasted up to several hours and some required emergency care and/or hospitalization. In addition to POME reactions, episodes of anaphylaxis, including life-threatening reactions, have also been reported following the intramuscular injection of testosterone undecanoate. Overall, 9 POME events in 8 patients and 2 events of anaphylaxis among 3556 patients treated with testosterone undecanoate were reported in 18 clinical trials; cases of both POME and anaphylaxis were also reported post-approval. Cases have occurred following initial injection as well as during later injections in the normal course of treatment. After every administration, monitor patient for 30 minutes and provide appropriate medical treatment in the event of serious POME or anaphylactoid reactions. Due to the risk of serious POME and anaphylaxis reactions, testosterone undecanoate (Aveed) is only available through a restricted program called the Aveed REMS Program. Clinicians wanting to prescribe Aveed, must be certified with the REMS Program for purposes of ordering or dispensing the product. Healthcare settings must also be certified with the REMS Program and must have the resources to provide emergency medical treatment in cases of serious POME and anaphylaxis. Further information is available at www.AveedREMS.com or call 1—855—755—0494. Transient respiratory reactions including the urge to cough, coughing fits, and respiratory distress immediately after intramuscular injection of testosterone enanthate have been reported during post-marketing surveillance. Care should be taken to ensure slow and deep gluteal muscle injection of testosterone preparations. Nasopharyngitis or pharyngitis (1 %) was reported in patients receiving testosterone topical solution (Axiron).
The treatment of hypogonadal men with testosterone may increase the risk of sleep apnea, especially in patients with risk factors for sleep apnea, such as obesity or chronic lung disease.
In clinical evaluation of intranasal testosterone gel, the following nasal adverse reactions were reported among the most common adverse events: nasopharyngitis (3.8—8.7%), rhinorrhea (3.8—7.8%), parosmia (5.8%), epistaxis (3.8—6.5%), nasal irritation or discomfort (3.8—5.9%), nasal scabbing (3.8—5.8%), nasal dryness (4.2%), nasal congestion (3.9%), and procedural pain (4.3%). Although the majority of nasal complaints were mild or moderate in severity, long-term data on nasal safety is limited. Advise patients to report any distressing nasal symptoms; if present, determine the need for further evaluation or continued treatment. Other reported respiratory adverse reactions, include: bronchitis (3.8—4.3%), upper respiratory tract infection (3.8—4.3%), and sinusitis (3.8%).
Call your health care provider immediately if you are experiencing any signs of an allergic reaction: skin rash, itching or hives, swelling of the face, lips, or tongue, blue tint to skin, chest tightness, pain, difficulty breathing, wheezing, dizziness, red, swollen painful area on the leg.
How To Store
Areas We Serve
North Florida | South Florida | ||
---|---|---|---|
Jacksonville | Miami | West Palm Beach | Weston |
Pensacola | Hialeah | Pompano Beach | Delray Beach |
Tallahassee | Fort Lauderdale | Davie | Homestead |
Ocala | Port St. Lucie | Miami Beach | Tamarac |
Gainesville | Pembroke Pines | Plantation | Sarasota |
Fort Walton Beach | Hollywood | Sunrise | Wellington |
Panama City | Miramar | Boca Raton | Jupiter |
Palm Coast | Coral Springs | Deerfield Beach | Margate |
Dunnellon | Miami Gardens | Boynton Beach | Coconut Creek |
Naples | Lauderhill | Broward | |
Spring hill | Orlando |
References [Click to open/close]
- Kishner, S., Morello, J.K., “Anabolic Steroid Use and Abuse”, Medscape: Endocrinology. October 2017. Retrieved from https://emedicine.medscape.com/article/128655-overview
- Patane, F.G., Liberto, A., Maglitto, A.N.M., Malandrino, P., Esposito, M., Amico, F., Cocimano, G., Li Rossi, G., Condorelli, D., Di Nunno, N., Montana, A., “Nandrolone Decanoate: Use, Abuse and Side Effects”, Medicina (Kaunas), vol. 56 issue 11. November 2020. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7696474/
- Geusens, P.,” Nandrolone decanoate: pharmacological properties and therapeutic use in osteoporosis”. Clinical Rheumatology suppl. 3, pp. 32-39. Available: https://pubmed.ncbi.nlm.nih.gov/8846659/#:~:text=A%20dose%20of%2050%20mg,patients%20with%20corticosteroid%20induced%20osteoporosis.
- Nandrolonr Decanoate. Available: https://www.glowm.com/resources/glowm/cd/pages/drugs/n007.html.
- Nandrolone Decanoate, Drug Bank. Available: https://go.drugbank.com/drugs/DB08804
- Nandrolone Decanoate, PubChem. National Library of Medicine. Available: https://pubchem.ncbi.nlm.nih.gov/compound/Nandrolone-decanoate
- Ayotte, C. , “Significance of 19-norandrosterone in athletes’ urine samples”, British Journal of Sports Medicine, vol.40 supp.1, i25-129. July 2006. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2657496/
- Nandrolone Decanoate. Available: https://www.glowm.com/resources/glowm/cd/pages/drugs/n007.html.
- Grossmann, M., Davey, R.A., “Androgen Receptor Structure, Function and Biology: From Bench to Bedside”, Clinical Biochemist Reviews, vol.37 issue 1, pp. 3 – 15. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4810760/#
- Bagchus, W.M., Smeets, J.M.W., Verheul, H.A.M., Jager-Van Der Veen, S.M., Port, A., Geurts, T.B.P., “Pharmacokinetic Evaluation of Three Different Intramuscular Doses of Nandrolone Decanoate: Analysis of Serum and Urine Samples in Healthy Men”, The Journal of Clinical Endocrinology & Metabolism”, vol.90 issue 5, pp.2624 – 2630. Available: https://watermark.silverchair.com/jcem2624.pdf
- Krauser JA, Guengerich FP. Cytochrome P450 3A4-catalyzed testosterone 6beta-hydroxylation stereochemistry, kinetic deuterium isotope effects, and rate-limiting steps. J Biol Chem 2005;280:19496-506.
- Androderm (testosterone transdermal system) package insert. Corona, CA: Watson Pharma, Inc.; 2014 Jun.
- Barnes KM, Dickstein B, Cutler GB Jr, et al. Steroid transport, accumulation, and antagonism of P-glycoprotein in multidrug-resistant cells. Biochemistry 1996;35:4820-7.
- Nandrolone Decanoate Injection, USP. Available: https://dailymed.nlm.nih.gov/dailymed/drugInfo.cfm?setid=3f059e04-1ebc-40bb-a49c-f9d90d41b1cb
- Aveed (testosterone undecanoate Injection) package insert. Malvern, PA: Endo Pharmaceuticals Solutions Inc.; 2014 Mar.
- DELATESTRYL (Testosterone Enanthate Injection, USP) package insert. Lexington, MA: Indevus Pharmaceuticals, Inc.; 2007 July.
- Axiron (testosterone) topical solution, package insert. Indianapolis, IN: Lilly USA, LLC; 2011 Dec.
- The American Geriatrics Society 2012 Beers Criteria Update Expert Panel. American Geriatrics Society updated Beers Criteria for potentially inappropriate medication use in older adults. J Am Geriatr Soc 2012;60:616-31.
- Vigen R, O’Donnell CI, Baron AE, et al. Association of testosterone therapy with mortality, myocardial infarction, and stroke in men with low testosterone levels. JAMA. 2013;310:1829-1836.
- WD Finkle, S Greenland, GK Ridgeway, et al. Increased Risk of Non-Fatal Myocardial Infarction Following Testosterone Therapy Prescription in Men. DOI: 10.1371/journal.pone.0085805
- FDA Medwatch – FDA evaluating risk of stroke, heart attack and death with FDA-approved testosterone products. Retrieved January 31, 2014. Available on the World Wide Web http://www.fda.gov/Drugs/DrugSafety/ucm383904.htm
- Natesto (testosterone) nasal gel package insert. Durants, Christ Church Barbados: Trimel BioPharma SRL; 2014 May.
- Testim (testosterone gel) package insert. Malvern, PA: Auxilium Pharmaceuticals, Inc.; 2010 Apr.
- Androgel (testosterone gel) package insert. Marietta, GA: Solvay Pharmaceuticals, Inc.; 2012 Sept.
- Striant (testosterone buccal system) package insert. Livingston, NJ: Columbia Laboratories, Inc.; 2014 Mar.
- Fortesta (testosterone) gel, package insert. Chadds Ford, PA: Endo Pharmaceuticals Inc.; 2010 Dec.
- DEPO-TESTOSTERONE (testosterone cypionate) injection, package insert. New York, NY: Pharmacia & Upjohn Co.; 2006 Sept.
- Kochenour NK. Lactation suppression. Clin Obstet Gynecol. 1980;23:1045-1059.
- Ross WB, Roberts D, Griffin PJ, et al. Cyclosporin interaction with danazol and norethisterone. Lancet 1986;1:330.
- Florinef® Acetate (fludrocortisone acetate) package insert. Bristol, TN: Monarch Pharmaceuticals; 2003 Jul.
- Humatrope™ (somatropin);package insert. Indianapolis, IN: Eli Lilly and Company; 2003 Jul.
- Zoladex® (goserelin acetate) package insert. Wilmington, DE: AstraZeneca Pharmaceuticals LP; 2003 Dec.
- Viadur® (leuprolide implant) package insert. Westhaven, CT: Bayer Pharmaceuticals; 2002 May.
- Aldercreutz H, Mazur W. Phyto-estrogens and western diseases. Annals of Medicine 1997;29:95—120.
- Krauser JA, Guengerich FP. Cytochrome P450 3A4-catalyzed testosterone 6beta-hydroxylation stereochemistry, kinetic deuterium isotope effects, and rate-limiting steps. J Biol Chem 2005;280:19496—506.
- Barnes KM, Dickstein B, Cutler GB Jr, et al. Steroid transport, accumulation, and antagonism of P-glycoprotein in multidrug-resistant cells. Biochemistry 1996;35:4820—7.
- Wells PS, Holbrook AM, Crowther NR et al. Interaction of warfarin with drugs and food. Ann Intern Med 1994;121:676—83.
- Goffin E, Pirson Y, Geubel A, et al. Cyclosporine-methyltestosterone interaction. Nephron 1991;59:174—5.
- Borras-Blasco J, Rosique-Robles JD, Peris-Marti J, et al. Possible cyclosporin-danazol interaction in a patient with aplastic anaemia. Am J Hematol 1999;62:63—4.
- Moller BB, Ekelund B. Toxicity of cyclosporine during treatment with androgens. N Engl J Med 1985;313:1416.
- Androgel® (testosterone gel) package insert. Montrogue, France: Laboratories Besins International; 2005 Aug.
- Androderm® (testosterone transdermal system) package insert. Corona, CA: Watson Pharma, Inc.; 1999 Jan.
- Propecia® (finasteride) package insert. Whitehouse Station, NJ: Merck & Co., INC.; 2003 Oct.
- Avodart™ (dutasteride) package insert. Research Triangle Park, NC: GlaxoSmithKline; 2005 May.
- Robbers JE, Tyler VE. Tyler’s Herbs of Choice: the Therapeutic Use of Phytomedicinals. Binghamton NY: Haworth Herbal Press, Inc.; 1999.
- German Commission E. Saw Palmetto berry, Sabal fructus, monograph Published March 2, 1989 and revised January 17, 1991. In: Blumenthal, M et al ., eds. The complete German Commission E Monographs -Therapeutic Guide to Alternative Medicines. Bosto
- Lazar JD, Wilner KD. Drug interactions with fluconazole. Rev Infect Dis 1990;12:S327—33.
- Hansten P, Horn J. The Top 100 Drug Interactions: A Guide to Patient Management. includes table of CYP450 and drug transporter substrates and modifiers (appendices). H & H Publications, LLP 2014 edition.
- Boyanov MA, Boneva Z, Christov VG. Testosterone supplementation in men with type 2 diabetes, visceral obesity, and partial androgen deficiency. Aging Male 2003;6:1—7.
- Kapoor D, Goodwin E, Channer KS, et al. Testosterone replacement therapy improves insulin resistance, glycaemic control, visceral adiposity, and hypercholesterolaemia in hypogonadal men with type 2 diabetes. Eur J Clin Endocrinol 2006; 154:899—90
- Hobbs CJ, Jones RE, Plymate SR. Nandrolone, a 19-nortestosterone, enhances insulin-independent glucose uptake in normal men. J Clin Endocrinol Metab 1996; 81:1582—5.
- Corrales JJ, Burgo RM, Garcia-Berrocal B, et al. Partial androgen deficiency in aging type 2 diabetic men and its relationship to glycemic control. Metabolism 2004;53:666—72
- Lee CH, Kuo SW, Hung YJ, et al. The effect of testosterone supplement on insulin sensitivity, glucose effectiveness, and acute insulin response after glucose load in male type 2 diabetics. Endocrine Res 2005;31:139—148.
- Cohen JC, Hickman R. Insulin resistance and diminished glucose tolerance in powerlifters ingesting anabolic steroids. J Clin Endocrinol Metab 1987;64:960—3.
- Ranexa (ranolazine extended-release tablets) package insert. Foster City, CA: Gilead Sciences, Inc. 2013 Dec.
- Letairis™ (ambrisentan) package insert. Foster City, CA: Gilead Sciences, Inc; 2008 Oct.
- Pradaxa (dabigatran) package insert. Ridgefield, CT: Boehringer Ingelheim Pharmaceuticals, Inc.; 2015 Jan.
- Gilotrif (afatinib) package insert. Ridgefield, CT: Boehringer Ingelheim Pharmaceuticals, Inc; 2013 Nov.
- Androgel 1.62% (testosterone gel) package insert. North Chicago, IL: Abbott Laboratories; 2014 Nov. 63.Naik BS, Shetty N, Maben EVS. Drug-induced taste disorders. European Journal of Internal Medicine 2010; 21:240-243.